C-Cl and Si-Cl Activation by P,N-Chelated Pt^{II} Complexes

Frank Stöhr, [a] Dietmar Sturmayr, [a] Guido Kickelbick, [a] and Ulrich Schubert*[a]

Keywords: Platinum / Silicon / Hemilabile ligands / Oxidative addition / Halogen compounds

The complex $[(\kappa^2-P_1N)-Ph_2PCH_2CH_2NMe_2]PtMe_2$ reacts with chlorinated hydrocarbons such as CCl_4 , $CHCl_3$, CH_2Cl_2 , and CH_3Cl by oxidative addition of the C–Cl bond. In the reaction with CCl_4 , the complexes $[(\kappa^2-P_1N)-Ph_2PCH_2CH_2NMe_2]-Pt(Me)Cl$, $[(\kappa^2-P_1N)-Ph_2PCH_2CH_2NMe_2]Pt(Me)_3Cl$, and $[(\kappa^2-P_1N)-Ph_2PCH_2CH_2NMe_2]Pt(CCl=CH_2)Cl$ are obtained. The analogous P_1P -chelated complex $[(\kappa^2-P_1P)-Ph_2CH_2CH_2PPh_2]-Pt_2CH_2CH_2PPh_2]$

PtMe $_2$ does not react under the same conditions. Reaction of $[(\kappa^2-P,N)-Ph_2PCH_2CH_2NMe_2]PtMe_2$ with ClSiMe $_2Ph$ results in the formation of $Ph_2Me_4Si_2$ along with $[(\kappa^2-P,N)-Ph_2PCH_2CH_2NMe_2]Pt(Me)Cl$ and $[(\kappa^2-P,N)-Ph_2PCH_2-CH_2NMe_2]Pt(Me)_3Cl$.

(© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002)

Introduction

The oxidative addition of organic halides to several complexes of the type (*N*,*N*-chelate)PtMe₂ to form Pt^{IV} derivatives has been described. While bromides and iodides react readily, simple alkyl chlorides were not employed since they react poorly.^[1] The reason is probably the carbon—halogen bond strength, which increases in the sequence C–I (56 kcal·mol⁻¹ for CH₃I), C–Br (70 kcal·mol⁻¹), C–Cl (84 kcal·mol⁻¹), and C–F (109 kcal·mol⁻¹). While the *thermal* reaction of chlorocarbons is not straightforward, Zelewsky et al. reported *photochemical* oxidative additions of chlorinated hydrocarbons to Pt^{II} complexes with hemilabile C,N ligands.^[2]

In previous studies on the oxidative addition of organosilanes to Pt^{II} complexes, we found that the reactivity the complexes is strongly enhanced by hemilabile *P,N*-chelating ligands.^[3,4] In this paper, we report that this is also true for reactions with chlorocarbons. The presence of the hemilabile ligands allows the *thermal* reactions of chloromethane derivatives with Pt^{II} complexes.

Results and Discussion

Reaction of (P^N)PtMe2 with CCl4

When CCl_4 was added to a solution of $[(\kappa^2-P,N)-Ph_2PCH_2CH_2NMe_2]PtMe_2$ (1) (the chelating ligand $Ph_2PCH_2CH_2NMe_2$ is abbreviated as $P\cap N$) in C_6D_6 at room temperature, a colorless precipitate was immediately formed. The reaction was complete within 2 min. In contrast, no reaction occurred with the bis(phosphane) complexes $[(\kappa^2-P,P)-Ph_2PCH_2CH_2PPh_2]PtMe_2$ or $(PhMe_2P)_2-PtMe_2$.

The course of the reaction was monitored by ³¹P, ¹H, and ¹⁹⁵Pt NMR spectroscopy. Three new sets of signals are observed in the ³¹P and ¹⁹⁵Pt NMR spectra, with characteristic coupling constants (Table 1).

Table 1. 31 P and 195 Pt NMR spectra of complexes **2–4** (in [D₆]acetone; δ in ppm, J in Hz)

Complex	$\delta(^{195}\text{Pt})$	$^1J_{ m PtP}$	$\delta(^{31}P)$
2	-4243	4678	27.29
3	-3905	4363	25.5
4	-2976	1213	9.33

The precipitate was spectroscopically characterized as $(P^{\cap}N)Pt(Me)Cl$ (2) and independently synthesized by reaction of $(P^{\cap}N)PtMe_2$ with HCl or from (norbornadiene)Pt(Me)Cl and $Ph_2PCH_2CH_2NMe_2$, as described for $[(\kappa^2-P,P)-Ph_2PCH_2CH_2CH_2PPh_2]Pt(Me)Cl.^{[5]}$ Complex 2 was only sparingly soluble in benzene, and therefore part of the formed 2 precipitated from the reaction solution.

After separation of **2** and addition of petroleum ether to the clear solution, the additional complex **3** crystallized. Compound **3** was identified by an X-ray crystal structure analysis as $(P^{\cap}N)Pt(CCl=CH_2)Cl$ (Figure 1 and Table 2). The vinylic protons in the ¹H NMR spectrum of isolated **3** have chemical shifts and ³ J_{PtH} coupling constants similar to those reported in the literature. ^[6,7] ⁴ J_{PH} and geminal ² $J_{H,H}$ were not observed.

In 3, Pt^{II} has the typical square-planar coordination. The Pt-P(1) distance of 220.19(8) pm and the Pt-N(16) distance of 218.1(2) pm are in the same range as observed for (silyl) Pt^{II} complexes with such ligands. [4] The chloro ligand is located *trans* to the phosphorus atom; the Pt-Cl(1) distance of 236.64(8) pm is typical for this arrangement. [8] The only other related structure is a methyl-substituted complex (PTFA) $Pt(CH_3)Cl$ [PTFA: (η^5 -cyclopentadienyl)(η^5 -4-endo-

[[]a] Institut f
ür Materialchemie, Technische Universit
ät Wien, Getreidemarkt 9, 1060 Wien, Austria

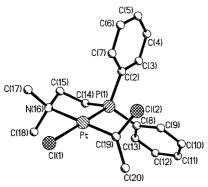


Figure 1. Molecular structure of $[(\kappa^2-P,N)-Ph_2PCH_2CH_2NMe_2]-Pt(CCl=CH_2)Cl$ (3); the asymmetric unit also contains three benzene molecules that are not shown in this figure

Table 2. Selected bond lengths [pm] and angles [°] for 3

Pt-Cl(1)	236.64(8)	C(19)-Pt-Cl(1)	89.61(8)
Pt-P(1)	220.19(8)	Cl(1)-Pt-P(1)	175.28(2)
Pt - N(16)	218.1(2)	C(2)-P(1)-C(8)	105.66(13)
Pt-C(19)	200.2(3)	C(2)-P(1)-C(14)	104.03(13)
P(1)-C(2)	181.6(3)	C(8)-P(1)-C(14)	107.84(13)
P(1)-C(8)	181.1(3)	C(15)-N(16)-C(17)	107.9(2)
P(1)-C(14)	182.8(3)	C(17)-N(16)-C(18)	108.7(2)
Cl(2) - C(19)	168.9(4)	C(15)-N(16)-C(17)	108.9(2)
N(16)-Pt-P(1)	85.32(7)	C(20)-C(19)-Pt	124.7(2)
C(19)-Pt-P(1)	94.03(8)	C(20)-C(19)-Cl(2)	117.7(2)
C(19)-Pt-N(16)	179.34(9)	Cl(2)-C(19)-Pt	117.61(18)
N(16)-Pt-Cl(1)	91.04(7)		

dimethylamino-3-diphenylphosphanyl-4,5,6,7-tetrahydro-1*H*-indenyl)iron]. A chlorovinyl-substituted bis(phosphane)Pt^{II} complex (Me₂PhP)₂Pt(CCl=CH₂)₂ was reported in the literature with a Pt-C bond length of 205.3(5) pm. ^[10] In comparison, the Pt-C bond length in 3 is rather short [Pt-C(19), 200.2(3) pm]. However, the accuracy of the bond lengths in the chlorovinyl ligand of 3 is rather low because the Cl and C positions are disordered. The position Cl(2) (Figure 1) has an occupation of 70% Cl and 30% C, and that of C(20) vice versa.

The ¹H NMR spectrum of the original reaction solution shows four Pt-CH₃ signals with characteristic ${}^2J_{\text{PtH}}$ and ${}^3J_{\text{PH}}$ coupling constants. One of them is assigned to the PtMe group of complex **2**. Since **3** contains no methyl ligands, the remaining three signals with equal intensity must belong to a single complex. This complex is spectroscopically identified as ($P^{\cap}N$)Pt(Me)₃Cl (**4**) by comparison with an authentic sample of **4** obtained by another route (see below). An X-ray structure analysis of **4** was performed.

The postulated sequence of reactions starting with 1 and CCl_4 is shown in Scheme 1.

 CCl_4 probably attacks $(P^{\cap}N)PtMe_2$ (1) by oxidative addition of one C–Cl bond in the first step of the reaction. Kuyper reported the oxidative addition of CCl_4 to $(bpy)PtMe_2$ yielding the stable product $(bpy)Pt(Me)_2$ - $Cl(CCl_3)$.^[11] In contrast, we did not observe the corresponding Pt^{IV} complex 5. It can therefore be assumed that subsequent reductive elimination to Pt^{II} complexes is fast. It appears that the hemilabile $(P^{\cap}N)$ -chelate ligand facilit-

Scheme 1

ates both the oxidative addition and the reductive elimination from the Pt complex. There are three possibilities of reductive elimination from complex 5: (i) Elimination of Me-CCl₃ to give complex 2. This possibility can be excluded because there is no NMR spectroscopic evidence for MeCCl₃. (ii) Elimination of MeCl to give complex 6. (iii) Elimination of ethane. There is no experimental evidence for the formation of ethane.

A bis(phosphane) complex analogous to **6**, $[(\kappa^2-P,P')-Ph_2PCH_2CH_2PPh_2]Pt(CCl_3)Me$, was reported to rearrange by a CCl_2 shift, followed by the elimination of $HCl.^{[12]}$ The same mechanism leads to the formation of **7** and the isolated vinylidene complex **3**. The eliminated HCl can react with the starting complex **1** to give complex **8**, followed by the elimination of methane to give complex **2**. The latter reaction sequence was confirmed by the reaction of $(P^{\cap}N)PtMe_2$ (**1**) with a solution of HCl in diethyl ether, which resulted in the formation of **2**.

Complex 1 does not react with the methyl chloride eliminated in the second step under the conditions at which the reaction with CCl₄ was performed (room temperature) to form the observed product 4 (4 is only formed at elevated temperatures, see below). We therefore propose a methyl transfer reaction between complexes 1 and 5 to give 4 and 6. The elimination of ethane from 4 can be assumed as another source of complex 2 in the reaction scheme above. This was proven by another experiment described below.

Due to the different donor/acceptor properties of the two Lewis basic centers of the $(P^{\cap}N)$ ligand, the reactions described above are highly selective, and no isomers of the complexes 2-4 were observed.

When the deuterated complex $(P^{\cap}N)Pt(CD_3)_2$ is used for the reaction with CCl_4 , the ³¹P NMR spectrum is unchanged. The $Pt-CH_3$ signals of complexes **2** and **4** and the $=CH_2$ signals of complex **3** are not detected in the ¹H NMR spectrum. The 2H NMR spectrum shows three Pt-CD₃ signals of equal intensity for the deuterated complex **4**, and one Pt-CD₃ signal for deuterated **2**. There is one additional peak at $\delta = 0.11$ ppm in the 1H NMR spectrum. This may belong to deuterated ethane, proving the formation of **2** from **4** by reductive elimination. Only one =CD₂ signal of the deuterated form of **3** is detected. The experiment was repeated in C_6H_6 since the second peak may be hidden by the broad signal of the solvent C_6D_6 . However, no further peak is detected. The lack of the second =CD₂ signal may be due to exchange effects. [13]

Reaction of (P[∩]N)PtMe₂ with CHCl₃

 $(P^{\cap}N)$ PtMe₂ was much more reactive towards CCl_4 than towards $CHCl_3$. While the reaction with CCl_4 was complete within 2 min at room temperature, no reaction was observed with $CHCl_3$ after 1 d under the same conditions. However, $(P^{\cap}N)$ Pt(Me)Cl (2) crystallized from a $CHCl_3$ / petroleum ether solution of $(P^{\cap}N)$ PtMe₂ after several weeks. For a reasonable reaction rate, it was necessary to heat the mixture to 60 °C. At this temperature, the reaction was complete in about 10 h.

Three new signals are observed in the ³¹P NMR spectrum when a mixture of (P^N)PtMe2 and CHCl3 in a 1:2 ratio was heated in C_6D_6 . Comparison of the spectra with those of the products obtained in the reaction of $(P^{\cap}N)PtMe_2$ with CCl₄ shows that complexes 2 and 4 are also formed in the reaction with CHCl₃. The concentrations of 2 and 4 increase simultaneously, while the concentration of 1 decreases. The new complex 9 with a large ${}^{1}J_{\text{PtP}}$ coupling constant, indicating a chlorine atom trans to the phosphorus atom, is detected in small quantities only after a reaction time of about 6 h. No Pt-Me resonances are observed in the ¹H NMR spectrum, other than those of complexes 4 and 2. According to the reaction mechanism shown in Scheme 1, complex 9 could be $(P^{\cap}N)Pt(C1)(CH=CH_2)$. There are signals between $\delta = 5$ and 6 ppm in the ¹H NMR spectrum, which may arise from the vinyl group of 9. The signals are very weak probably due to the H-H, H-P, and H-Pt coupling, and unequivocal identification is therefore not possible. We were not able to separate 9 from the reaction mixture.

When $(P^{\cap}N)Pt(CD_3)_2$ is treated with CHCl₃, no $Pt-CH_3$ signals are observed in the ¹H NMR spectrum, and the ²H NMR spectrum shows a signal for deuterated **2** and three signals of equal intensity for deuterated **4**.

Reaction of (P^N)PtMe2 with CH2Cl2

The reactivity of CH₂Cl₂ was lower than that of CHCl₃. At 60 °C in C₆D₆, **2** and **4** were formed after a few days, along with decomposition products, which were not identified, and a black precipitate. In contrast to the reaction with CCl₄ and CHCl₃, no other P-containing platinum complex is observed by ³¹P NMR spectroscopy.

The sequence of reactivity of the halogenated hydrocarbons, i.e. $CCl_4 > CHCl_3 > CH_2Cl_2$, is related to the C-Cl bond strength in these compounds $(CCl_4 - 248 \text{ kJ} \cdot \text{mol}^{-1},$

CHCl₃ $-280 \text{ kJ} \cdot \text{mol}^{-1}$, CH₂Cl₂ $-304 \text{ kJ} \cdot \text{mol}^{-1}$, CH₃Cl $-328 \text{ kJ} \cdot \text{mol}^{-1}$).

Reaction of (P^N)PtMe2 with CH3Cl

CH₃Cl does not fit into the sequence as it reacted with $(P^{\cap}N)$ PtMe₂ in a hot C₆D₆ solution to form complex **4** and traces of **2**. The reaction was complete within 12 h. The amount of **2** increased on further heating, indicating reductive elimination of ethane from **4**. At room temperature no reaction occurred after 1 h (see above). Again, the analogous P_i P-chelated complex (dppe)PtMe₂ did not react with CH₃Cl at 60 °C in C₆D₆ after 24 h.

Complex 4 was structurally characterized and has a distorted octahedral geometry (Figure 2 and Table 3). The asymmetric unit contains only half of the molecule with Pt, C(20), C(21), C(8) N(10), and P(1) in a crystallographic mirror plane. Therefore, the positions of Cl and C(22A) are disordered and hence have a mixed occupancy. The C(9) atom of the ethylene bridge is also disordered. The Pt-C distances of the equatorial methyl substituents [Pt-C(20):

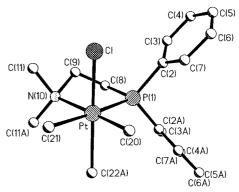


Figure 2. Molecular structure of $[(\kappa^2-P,N)-Ph_2PCH_2CH_2NMe_2]-Pt(Me)_3Cl$ (4)

Table 3. Selected bond lengths [pm] and angles [°] measured for 4 and calculated for 4b. The asterisks refer to symmetry-equivalent atoms

	4	4b
Pt-C(20)	206.3(10)	207.2
Pt-C(21)	208.2(9)	208.6
Pt-N(10)	230.4(8)	230.8
Pt-P(1)	236.9(2)	244.7
Pt-Cl	240.9(3)	252.8
Pt-C(22)*	240.9(3)	208.3
C(20) - Pt - C(21)	85.4(5)	87.9
N(10) - Pt - C(20)	178.1(4)	177.6
N(10)-Pt-C(21)	92.7(4)	91.7
P(1) - Pt - C(20)	99.5(3)	100.0
P(1)-Pt-C(21)	175.1(4)	171.5
P(1)-Pt-N(10)	82.4(2)	80.2
Cl-Pt-C(20)	87.55(8)	94.7
Cl-Pt-C(21)	88.36(7)	90.1
Cl-Pt-N(10)	92.40(8)	82.9
Cl-Pt-P(1)	91.84(7)	86.1
C(2)-P(1)-C(8)	105.9(3)	
C(11) - N(10) - C(11)*	105.4(10)	
C(9) - N(10) - C(11)	87.3(9)	

206.3(10) pm; Pt-C(21): 208.2(9) pm] are in the same range as for corresponding Pt^{II} complexes with a P-N-chelating ligand.^[14] Due to the disorder of the axial positions, an average distance of only 240.9(3) pm was found.

In order to estimate the Pt-Cl and Pt-C distances, in spite of the disorder of the axial ligands, an ab initio calculation was performed. The phenyl and methyl groups of the chelate ligand were substituted by hydrogen to reduce calculation time. The geometry optimization of this simplified molecule **4b** resulted a Pt-C(22) distance of 208.3 pm and a Pt-Cl distance of 252.8 pm. Additional bond lengths and angles are given in Table 2. Most bond lengths and angles are in good agreement with the measured values of complex **4**. The calculated bond lengths are typical for hexacoordinated Pt compounds and are in agreement with those found in an iodotrimethylplatinum(IV) complex.^[15]

Elimination of Ethane from $(P^{\cap}N)Pt(Me)_3Cl$ (4) on Heating

A sample of the isolated complex 4 was dissolved in [D₈]toluene and heated in an NMR tube. At 60 °C, formation of 2 was detected in the ¹H and ³¹P NMR spectra, but the reaction rate was quite low. Therefore, the temperature was increased to 90 °C, at which temperature the reaction was complete in about 12 h. At this temperature the two Pt-CH₃ signals of 4 at $\delta = 0.59$ and 1.92 ppm are extremely broad, while the third Pt-CH₃ signal of 4 at δ = 1.49 ppm remains unchanged. Comparison of the Pt-CH₃ resonances of 4 with that of complexes 1, 2, and a (PhMe₂P)₂PtMe₃Cl isomer^[16] analogous to 4, allows for the assignment of the Pt-Me signal at $\delta = 0.59$ ppm to the methyl group trans to Cl, the signal at $\delta = 1.92$ ppm to the methyl group trans to the nitrogen atom, and the signal at $\delta = 1.49$ ppm to the methyl group trans to the phosphorus atom. The broadening of the two methyl resonances appears to be related to the start of the reductive elimination of ethane, i.e. ethane is probably formed from the methyl groups trans to the nitrogen atom and trans to the chlorine atom. The formation of ethane was proven by mass spectrometry.

(P[∩]N)Pt(CD₃)₂ was analogously treated to check whether the addition of CH₃Cl is stereospecific. However, no difference is seen in the 31P NMR spectra compared with those of the experiments with $(P^{\cap}N)PtMe_2$. The ¹H NMR spectrum shows three Pt-CH₃ signals of 4 with equal intensities. Instead of three singlets with satellites, there are three doublets of doublets with satellites. The additional line splitting may be due to an H-D coupling, or due to the different chemical shifts of the structural isomers. Corresponding signals, also with equal intensity, are seen in the ²H NMR spectrum, indicating a statistical distribution of the added CH₃ group to the three possible positions of complex 4. An intermolecular exchange reaction, or rearrangement via a five-coordinate complex with an intermediate and the reversible opening of the $(P^{\cap}N)$ -chelate ligand may be responsible for the scrambling reaction. Thermolysis of $(P^{\cap}N)Pt(CD_3)_2(Me)Cl$ results in the formation of both C_2H_6 and $C_2H_3D_3$, as found by mass spectrometry.

Reaction of (P^N)PtMe2 with ClSiMe2Ph

(P^{\cappa N})PtMe₂ not only exhibited a strongly increased reactivity towards C-Cl bonds in comparison with related (P^{\text{P}})PtMe₂ complexes, but was also able to activate the stronger Si-Cl bond of ClSiMe₂Ph. When a solution of (P[∩]N)PtMe₂ was heated in C₆D₆ with a stoichiometric amount of ClSiMe₂Ph, the disilane Ph₂Me₄Si₂ was the only silicon-containing product. Complexes 4 and 2 were formed in this reaction in a ratio of about 1:4. The amount of 2 increased after complete conversion of the chlorosilane, indicating a reductive elimination of ethane from 4, forming 2. The products were identified by spectroscopic comparison with independently prepared samples. A possible reaction mechanism is shown in Scheme 2. Although the intermediate complex 10 was not observed, this mechanism appears plausible because the formation of both 4 and 10 would correspond to the formation of complexes 4-5 in the reaction of 1 with CCl₄ (Scheme 1). A rearrangement similar to $6 \rightarrow 7$ is obviously less favored than the substitution of the second methyl ligand.

Conclusions

The reactivity of Pt^{II} complexes with the chelating P^{\cappa N} ligands towards chlorinated hydrocarbons and chlorinated silanes is greatly enhanced relative to the corresponding chelating bis(phosphane) complexes. This reactivity enhancement may have two reasons: (i) The nitrogen donor group of the P^{\cappa N} ligands can be reversibly de-coordinated, i.e. the ligand is hemilabile. In comparison, the de-coordination of a phosphorus donor center chelating bis(phosphane) complexes is much more difficult. Hemilabile ligands are known to promote both oxidative addition and reductive elimination reactions. (ii) Due to the different donor/acceptor properties of the two Lewis basic centers in the P^{\cappa N} ligands, the electronic difference *trans* to the nitrogen atom is different to that *trans* to the phosphorus atom, i.e. the bond strengths of the *trans* ligands are greatly influenced.

Experimental Section

General: All reactions were performed under dried argon. All reagents were of best commercial grade. The complexes $(P^{\cap}N)PtMe_2$,

 $(P^{\cap}P)PtMe_2,$ and $(PhMe_2P)_2PtMe_2$ were prepared as previously described. $^{[4]}$ Solids were used without further purification, liquids were dried with molecular sieves (4 Å) for 24 h and argon-saturated by freeze-pump-thaw. NMR spectra were recorded with a Bruker DPX 300 Avance spectrometer (1H and ^{29}Si NMR spectroscopy, TMS as an external standard. ^{31}P NMR spectroscopy, 85% H_3PO_4 as an external standard; ^{195}Pt NMR spectroscopy, Na_2PtCl_6 in D_2O as an external standard). ^{29}Si NMR spectra were recorded with an INEPT pulse sequence.

Computational Details: The geometry optimization of the equilibrium geometry of **4b** was carried out using the B3LYP version of DFT, which is comprised of Becke's hybrid three-parameter exchange functional, $^{[17]}$ and the correlation functional of Lee, Yang, and Parr. The structure was characterized as minima by computing the Hessian matrices. The ab initio calculation was performed with the Gaussian98 program package. The available ECP basis sets in Gaussian98, the SDD basis set was used for platinum and the 6-311++G(d) basis set for all the other atoms.

General Procedure for the Reaction of Pt Complexes with Halogenated Compounds: All reactions were performed under argon in NMR or Schlenk tubes. The reaction vessels were flame-dried and argon-saturated before addition of the Pt complex. After addition of the solvent and the liquid halogenated compound, the vessel was closed and put into a thermostatically controlled oil bath or into the thermostatically controlled NMR spectrometer immediately. Experiments with silanes were performed in an NMR Teflon liner.

Reaction of $(P^{\cap}N)PtMe_2$ with CCl_4 in C_6D_6 : CCl_4 (11.4 μL , 0.12 mmol) was added to a solution of 1 (28.7 mg, 0.06 mmol) in 0.7 mL of C₆D₆. A colorless solid precipitated immediately. It was separated by decanting the liquid phase and washed twice with cold benzene. The NMR spectra were identical with that of an independently prepared sample of 2 (see below). The supernatant solution was decanted and analyzed by NMR spectroscopy. ¹H NMR $(C_6D_6, 27 \, ^{\circ}C)$: $\delta = 0.61 \, (d, {}^{3}J_{PH} = 7.7, {}^{2}J_{PtH} = 71 \, Hz, \, Pt-CH_3,$ 4), 1.39 (d, ${}^{3}J_{PH} = 3.0$, ${}^{2}J_{PtH} = 75$ Hz, Pt-CH₃, 2), 1.61 (d, ${}^{3}J_{PH} = 8.1$, ${}^{2}J_{PtH} = 57$ Hz, Pt-CH₃, 4), 1.89 (s, ${}^{3}J_{PtH} = 13.8$ Hz, NMe₂, 4), 2.03 (d, ${}^{3}J_{PH} = 7.0$, ${}^{2}J_{PtH} = 73$ Hz, Pt-CH₃, 4), 2.56 (s, ${}^{3}J_{PtH} =$ 13 Hz, NMe₂, 3), 2.64 (s, ${}^{3}J_{PtH} = 11$ Hz, NMe₂, 2), 2.69 (s, ${}^{3}J_{PtH} =$ 10 Hz, NMe₂, **4**), 5.04 (s, ${}^{3}J_{PtH} = 34$ Hz, cis = CH, **3**), 6.18 (s, ${}^{3}J_{\text{PtH}} = 89 \text{ Hz}, trans = \text{CH}, 3) \text{ ppm. } {}^{31}P\{{}^{1}\text{H}\} \text{ NMR } (\text{C}_{6}\text{D}_{6}, 27 \, {}^{\circ}\text{C}):$ $\delta = 8.11 \text{ (s, }^{1}J_{PtP} = 1185 \text{ Hz, 4)}, 24.43 \text{ (s, }^{1}J_{PtP} = 4375 \text{ Hz, 3)}, 26.45$ (s, ${}^{1}J_{PtP} = 4677 \text{ Hz}$, 2) ppm. ${}^{195}Pt\{{}^{1}H\}$ NMR (C₆D₆, 27°C): $\delta =$ -4243 (d, ${}^{1}J_{PtP} = 4678$ Hz, **2**), -3905 (d, ${}^{1}J_{PtP} = 4363$ Hz, **3**), -2976 (d, ${}^{1}J_{PtP} = 1213$ Hz, 4) ppm. After the addition of some petroleum ether (boiling range 30-50°C)) to the decanted reaction solution, crystals of 3 suitable for a crystal structure analysis were formed within a few days. 3: ¹H NMR ([D₆]acetone, 27 °C): δ = 2.65-2.85 (m, 4 H, CH₂), 2.87 (s, ${}^{3}J_{PtH} = 14$ Hz, 6 H, NCH₃), 4.39(s, ${}^{3}J_{PtH} = 36 \text{ Hz}$, 1 H, cis =CH), 5.43 (s, ${}^{3}J_{PtH} = 90 \text{ Hz}$, 1 H, trans = CH), 7.50-7.95 (m, 10 H, C_{arom}) ppm. $^{31}P\{^{1}H\}$ NMR $(C_6D_6, 27 \,^{\circ}C)$: $\delta = 24.33 \,(s, 4376 \,Hz) \,ppm. \,^{31}P\{^1H\} \,NMR \,([D_6]-1)$ acetone, 27°C): $\delta = 25.5$ (s, ${}^{1}J_{PtP} = 4369$ Hz) ppm.

Synthesis of (P^N)Pt(Cl)Me (2) by Reaction of (P^N)PtMe₂ with HCl: A solution of HCl (0.1 mL, 0.10 mmol) in diethyl ether was added to a solution of (P^N)PtMe₂ (23.9 mg, 0.05 mmol) in 0.7 mL of C₆D₆. The volatile compounds were then removed from the solution, and (P^N)Pt(Me)Cl (2) remained as a colorless powder in a quantitative yield. ¹H NMR (CDCl₃, 27 °C): δ = 0.63 (d, ${}^3J_{PH}$ = 2.8, ${}^2J_{PtH}$ = 73 Hz, Pt-CH₃, 2), 2.3-2.7 (m, CH₂CH₂), 2.87 (s, ${}^3J_{PtH}$ = 11 Hz, NMe₂), 7.4-7.8 (m, PPh₂) ppm. ³¹P{¹H} NMR (CDCl₃, 27 °C): δ = 27.28 (s, ${}^1J_{PtP}$ = 4700 Hz) ppm.

 $C_{17}H_{23}CINPPt$ (475.4): calcd. C 40.61, H 4.70, N 2.56; found C 41.39, H 4.70, N 2.56.

Synthesis of (P^N)Pt(Cl)Me (2) by Reaction of (nbd)PtMeCl^[5] with P^N: A solution of [2-(diphenylphosphanyl)ethyl]dimethylamine (P^N)l^[20] (282 mg, 1.09 mmol) in 10 mL of CH₂Cl₂ was added slowly to a solution of (nbd)Pt(Me)Cl (365 mg, 1.08 mmol) in 40 mL of CH₂Cl₂. After the mixture was stirred for 1 h, the colorless product was filtered and washed with benzene (3 × 5 mL) and pentane (3 × 5 mL). Yield 543 mg (85%).

Reaction of (P[∩]N)Pt(CD₃)₂ with CCl₄ in C₆D₆: CCl₄ (8.7 μL, 0.09 mmol) was added to a solution of (P[∩]N)Pt(CD₃)₂ (22 mg, 0.045 mmol) in 0.7 mL of C₆D₆. ¹H NMR (C₆D₆, 27 °C): δ = 1.83 (s, ${}^{3}J_{\text{PtH}} = 14.3 \text{ Hz}$, NMe₂, 4), 2.59 (s, ${}^{3}J_{\text{PtH}} = 13 \text{ Hz}$, NMe₂, 3), 2.64 (s, ${}^{3}J_{\text{PtH}} = 10.7 \text{ Hz}$, NMe₂, 2), 2.69 (s, ${}^{3}J_{\text{PtH}} = 9.6 \text{ Hz}$, NMe₂, 4) ppm. ²H{¹H} NMR (C₆D₆, 27 °C): δ = 0.43 (s, ${}^{2}J_{\text{PtD}} = 10.1 \text{ Hz}$, Pt-CD₃, 4), 1.18 (s, ${}^{2}J_{\text{PtD}} = 10.0 \text{ Hz}$, Pt-CD₃, 2), 1.40 (s, ${}^{2}J_{\text{PtD}} = 7.5 \text{ Hz}$, Pt-CD₃, 4), 1.83 (s, ${}^{2}J_{\text{PtD}} = 10.9 \text{ Hz}$, Pt-CD₃, 4), 4.89 (s, =CD₂, 3) ppm. ³¹P{¹H} NMR (C₆D₆, 27 °C): δ = 8.67 (s, ¹ $J_{\text{PtP}} = 1180 \text{ Hz}$, 4), 24.72 (s, ¹ $J_{\text{PtP}} = 4381 \text{ Hz}$, 3), 26.89 (s, ¹ $J_{\text{PtP}} = 4679 \text{ Hz}$, 2) ppm.

Reaction of (P[∩]N)PtMe₂ with CHCl₃ in C₆D₆: CHCl₃ (7.8 μL, 0.095 mmol) was added to a solution of 1 (23 mg, 0.05 mmol) in 0.7 mL of C₆D₆. After addition, the sample was heated to 60 °C. ¹H NMR (C₆D₆, 60 °C): δ = 0.59 (d, ${}^{3}J_{PH}$ = 7.7, ${}^{2}J_{PtH}$ = 71.0 Hz, Pt-CH₃, 4), 1.34 (d, ${}^{3}J_{PH}$ = 3.5, ${}^{2}J_{PtH}$ = 75.1 Hz, Pt-CH₃, 2), 1.53 (d, ${}^{3}J_{PH}$ = 8.3, ${}^{2}J_{PtH}$ = 58.0 Hz, Pt-CH₃, 4), 1.91 (s, ${}^{3}J_{PtH}$ = 14.1 Hz, NCH₃, 4), 1.94 (d, ${}^{3}J_{PH}$ = 6.9, ${}^{2}J_{PtH}$ = 73.1 Hz, Pt-CH₃, 4), 2.60 (s, ${}^{3}J_{PtH}$ = 12.6 Hz, NCH₃, 9), 2.64 (s, ${}^{3}J_{PtH}$ = 11.5 Hz, NMe₂, 2), 2.70 (s, ${}^{3}J_{PtH}$ = 9.3 Hz, NMe₂, 4) ppm. ${}^{31}P\{{}^{1}H\}$ NMR (C₆D₆, 60 °C): δ = 7.57 (s, ${}^{1}J_{PtP}$ = 1175 Hz, 4), 26.15 (s, ${}^{1}J_{PtP}$ = 4657 Hz, 2), 27.95 (s, ${}^{1}J_{PtP}$ = 4559 Hz, 9) ppm.

Reaction of (P[∩]N)Pt(CD₃)₂ with CHCl₃ in C₆D₆: CHCl₃ (19.5 μL, 0.24 mmol) was added to a solution of 1 (58.6 mg, 0.12 mmol) in 0.7 mL of C₆D₆. The sample was then heated to 60 °C. ¹H NMR (C₆D₆, 60 °C): δ = 1.93 (s, ³J_{PtH} = 13.9 Hz, NCH₃, 4), 2.59 (s, ³J_{PtH} = 12.4 Hz, NCH₃, 9), 2.64 (s, ³J_{PtH} = 11.8 Hz, NMe₂, 2), 2.72 (s, ³J_{PtH} = 9.2 Hz, NMe₂, 4). ²H{¹H} NMR (C₆D₆, 60 °C): 0.45 (s, ²J_{PtD} = 10.4 Hz, Pt-CD₃, 4), 1.26 (s, ²J_{PtD} = 10.0 Hz, Pt-CD₃, 2), 1.48 (s, ²J_{PtD} = 7.5 Hz, Pt-CD₃, 4), 1.86 (s, ²J_{PtD} = 11.0 Hz, Pt-CD₃, 4) ppm. ³¹P{¹H} NMR (C₆D₆, 60 °C): δ = 7.93 (s, ¹J_{PtP} = 1180 Hz, 4), 26.63 (s, ¹J_{PtP} = 4679 Hz, 2), 28.41 (s, ¹J_{PtP} = 4562 Hz, 9) ppm.

Reaction of (P[∩]N)PtMe₂ with CH₂Cl₂ in C₆D₆: CH₂Cl₂ (29.4 μL, 0.445 mmol) was added to a solution of 1 (21.5 mg, 0.045 mmol) in 0.7 mL of C₆D₆. After addition, the sample was heated to 60 °C. 31 P{ 1 H} NMR (C₆D₆, 60 °C): $\delta = 7.33$ (s, $^{1}J_{PtP} = 1167$ Hz, 4), 26.60 (s, $^{1}J_{PtP} = 4681$ Hz, 2) ppm.

Formation of (P^N)Pt(Me)₃Cl (4) by Reaction of (P^N)PtMe₂ with CH₃Cl in C₆D₆: A gentle stream of methyl chloride was bubbled through a solution of 1 (108 mg, 0.22 mmol) in 2 mL of C₆D₆. After 1 h, the ¹H NMR spectrum showed an intensive CH₃Cl signal at $\delta = 2.48$ ppm, but no formation of new complexes. The CH₃Cl saturated solution was then heated to 60 °C and a finely divided colorless solid precipitated. After 12 h, the conversion into 4 was approximately 95%. After 24 h, conversion was complete and only traces of 1 were observed. Crystallization from a saturated benzene solution yielded pure 4 as colorless crystals, some of them suitable for a X-ray structure analysis. ¹H NMR (C₆D₆, 60 °C): $\delta = 0.59$ (d, ${}^3J_{\rm PH} = 7.7$, ${}^2J_{\rm PtH} = 70.8$ Hz, Pt-CH₃), 1.51 (d, ${}^3J_{\rm PH} = 8.2$, ${}^2J_{\rm PtH} = 57.6$ Hz, Pt-CH₃), 1.89 (s, ${}^3J_{\rm PtH} = 14.1$ Hz, NCH₃), 1.93

Table 4. Crystallographic data for 3 and 4

Compound	3	4
Empirical formula	$C_{30}H_{26}Cl_2NPPt$	C ₁₉ H ₂₂ ClNPPt
Formula mass	697.48	525.89
Crystal system	triclinic	orthorhombic
Space group Unit cell dimensions	$Par{1}$	Pnma
<i>a</i> [pm]	832.3(3)	900.36(4)
b [pm]	1300.8(4)	1359.59(6)
c [pm]	1492.4(5)	1655.71(7)
α [°]	68.069(5)°	90
β [˙]	81.566(6)°	90
γ [°]	81.455(6)°	90
Volume [pm ³]	$1474.8(8) \times 10^6$	$2026.79(15)\times10^6$
Z	2	4
Calculated density [g cm ⁻³]	1.571	1.723
Absorption coefficient [mm ⁻¹]	5.011	7.132
F(000)	680	1012
Crystal size [mm]	$0.60 \times 0.16 \times 0.16$	$0.32 \times 0.28 \times 0.08$
θ range [°]	1.81 - 28.35	1.94 - 26.37
Reflections collected/unique	10116/7137	11350/2143
•	[R(int) = 0.0183]	[R(int) = 0.0373]
Completeness to θ [%]	97.0	99.0
Max. and min. transmission	0.5011, 0.1530	0.5992, 0.2087
Data/restraints/parameters	7137/0/317	2143/0/119
Goodness-of-fit on F^2	1.033	1.213
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0208,$	$R_1 = 0.0312,$
	$wR_2 = 0.0534$	$wR_2 = 0.0792$
R indices (all data)	$R_1 = 0.0229,$	$R_1 = 0.0335,$
,	$wR_2 = 0.0543$	$wR_2 = 0.0803$
Weighting scheme $P = (F_0^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0299P)^2 + 0.16P]$	$w = 1/[\sigma^2(F_0^2) + 9.69 P]$
Extinction coefficient	0.0014(2)	0.00040(15)
Largest diff. peak/hole [e·A ⁻³]	1.147/-1.131	0.888/-1.130

(d, ${}^2J_{PtH} = 7.2$, ${}^3J_{PH} = 73.1$ Hz, Pt-CH₃), 2.70 (s, ${}^3J_{PtH} = 9.4$ Hz, NCH₃) ppm. ${}^{31}P\{{}^{1}H\}$ NMR (C₆D₆, 60 °C): $\delta = 8.01$ (s, ${}^{1}J_{PtP} = 1166$ Hz) ppm. C₁₉H₂₉CINPPt (525.9): found C 42.82, H 5.48, N 2.63; found C 42.81, H 5.37, N 2.65.

Reaction of (P[∩]N)**Pt(CD₃)₂ with CH₃Cl in C₆D₆:** A gentle stream of methyl chloride was bubbled through a solution of (P[∩]N)**Pt(CD₃)**₂ (27.5 mg, 0.056 mmol) in 0.6 mL of C₆D₆. The CH₃Cl-saturated solution was heated to 60 °C for 24 h. The conversion was complete yielding (P[∩]N)**Pt[(CH₃)/(CD₃)]**₃Cl, with a statistical distribution of the added CH₃ group. (P[∩]N)**Pt(CH₃)(CD₃)**₂Cl: ¹H NMR (C₆D₆, 60 °C): δ = 0.59 (dd, *J* = 1.0, ³*J*_{PH} = 7.7, ²*J*_{PtH} = 71.0 Hz, **Pt**−CH₃), 1.49 (dd, *J* = 1.1, ³*J*_{PH} = 8.1, ²*J*_{PtH} = 57.0 Hz, **Pt**−CH₃), 1.92 (dd, *J* = 1.0, ³*J*_{PH} = 7.0, ²*J*_{PtH} = 72.6 Hz, **Pt**−CH₃) ppm. ²H NMR (C₆D₆, 27 °C): δ = 0.45 (³*J*_{PD} = 1.1, ²*J*_{PtD} = 10.7 Hz, **Pt**−CD₃), 1.36 (³*J*_{PD} = 1.7, ²*J*_{PtD} = 6.9 Hz, **Pt**−CD₃), 1.84 (³*J*_{PD} = 1., ²*J*_{PtD} = 10.8 Hz, **Pt**−CD₃) ppm. ³¹**P**{¹**H**} NMR (C₆D₆ 60 °C): δ = 8.01 (s, ¹*J*_{PtP} = 1161 Hz) ppm.

Reaction of (P^N)PtMe₂ with ClSiMe₂Ph in C₆D₆: ClSiMe₂Ph (26 μL, 0.156 mmol) was added to a solution of (P^N)PtMe₂ (37.5 mg, 0.078 mmol) in 0.5 mL of C₆D₆ in a Teflon liner. The sample was then heated to 60 °C. Because of the Teflon liner, the resolution of the ¹H NMR spectrum was very low, and resolution of the Pt complexes was not possible. ¹H NMR (C₆D₆, 60 °C): δ = 0.39 [s, (SiMe₂Ph)₂] ppm. ²⁹Si{¹H} NMR (C₆D₆, 60 °C): δ =

-21.45 ppm. ³¹P{¹H} NMR (C₆D₆, 60 °C): δ = 7.87 (s, ${}^{1}J_{PtP}$ = 1168 Hz, **4**), 26.24 (s, ${}^{1}J_{PtP}$ = 4665 Hz, **2**) ppm.

X-ray Structure Analyses: Crystal data and experimental details are given in Table 4. The X-ray data were collected at 294 K with a Siemens SMART CCD area detector diffractometer using graphitemonochromated Mo- K_{α} radiation ($\lambda = 0.71073 \text{ Å}$), a nominal crystal-to-detector distance of 4.40 cm and 0.3° ω-scans frames. Corrections for Lorentz polarization, and an empirical absorption correction with the program SADABS were applied. The structures were solved by direct methods (SHELXS-86) and refined by the fullmatrix least-squares method based on F^2 (SHELXL-93). All nonhydrogen atoms were refined anisotropically, and the hydrogen atoms were included in idealized positions. CCDC-174589 (3) and -174590 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We thank the Fonds zur Förderung wissenschaftlicher Forschung (FWF) for the support of this work.

- [1] V. de Felice, B. Giovannitti, A. de Renzi, D. Tesauro, P. Panunzi, J. Organomet. Chem. 2000, 593/594, 445.
- L. Chassot, A. v. Zelewsky, Helv. Chim. Acta 1986, 69, 1855. L. Chassot, A. v. Zelewsky, D. Sandrini, M. Maestri, V. Balzani, J. Am. Chem. Soc. 1986, 108, 6084. C. Deuschel-Corioley, R. Lüönd, A. v. Zelewsky, Helv. Chim. Acta 1989, 72, 377. A. v. Zelewsky, A. P. Suckling, H. Stoeckli-Evans, Inorg. Chem. 1993, 32, 4585.
- [3] J. Pfeiffer, U. Schubert, Organometallics 1999, 18, 3245.
- [4] J. Pfeiffer, U. Schubert, Organometallics 2000, 19, 62.
- [5] G. P. C. M. Dekker, A. Buijs, C. J. Elsevier, K. Vrieze, Organometallics 1992, 11, 1937.
- [6] R. A. Bell, M. H. Chisholm, J. Chem. Soc., Chem. Commun. 1976, 200.
- [7] R. A. Bell, M. H. Chisholm, *Inorg. Chem.* 1977, 16, 687.
- [8] R. Argazzi, P. Bergamini, E. Costa, V. Gee, J. K. Hogg, A. Martin, A. G. Orpen, P. G. Pringle, *Organometallics* 1996, 15, 5591.
- [9] B. Jedlicka, R. E. Rulke, W. Weissensteiner, R. Fernandez-Galan, F. A. Jalon, B. R. Manzano, J. R. de la Fuente, N. Veldman, H. Kooijman, A. L. Spek, *J. Organomet. Chem.* 1996, 516, 97.
- [10] D. A. Piering, J. M. Malin, J. Am. Chem. Soc. 1976, 98, 19. D.
 A. Piering, J. M. Malin, J. Am. Chem. Soc. 1976, 98, 6046.
- [11] J. Kuyper, Inorg. Chem. 1977, 17, 77.
- [12] P. W. N. M. van Leeuwen, C. F. Roobeck, R. Huis, J. Organomet. Chem. 1977, 142, 243.
- [13] R. A. Bell, M. H. Chrisholm, *Inorg. Chem.* **1977**, *16*, 698.

- [14] U. Schubert, J. Pfeiffer, F. Stöhr, D. Sturmayr, S. Thompson, J. Organomet. Chem., 2002, 646, 53.
- [15] F. S. M. Hassan, S. J. Higgins, G. B. Jacobsen, B. L. Shaw, M. Thornton-Pett, J. Chem. Soc., Dalton Trans. 1988, 3011.
- [16] J. D. Ruddick, B. L. Shaw, Inorg. Phys. Theor. 1969, 2801.
- [17] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [18] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200.
- [19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Revision A.3, Gaussain, Inc., Pittsburgh, PA, 1998.
- [20] R. Malet, M. Morena-Manas, T. Parella, R. Pleixats, J. Org. Chem. 1996, 61, 758.

Received March 7, 2002 [I02122]